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Abstract. Local electron–ion pseudopotentials fitted to dominant density parameters of the
solid state (valence, equilibrium average electron density and interstitial electron density) have
been constructed and tested for sixteen simple metals. Calculated solid-state properties present
little evidence of the need for pseudopotential non-locality, but this need is increasingly evident
as the pseudopotentials are transferred further from their solid-state origins. Transferability is
high for Na, useful for ten other simple metals (K, Rb, Cs, Mg, Al, Ga, In, Tl, Sn, and Pb), and
poor for Li, Be, Ca, Sr and Ba. In the bulk solid, we define a predictor of transferability and
check the convergence of second-order pseudopotential perturbation theory for bcc Na. For six-
atom octahedral clusters, we find that the pseudopotential correctly predicts self-compressions
or self-expansions of bond length with respect to the bulk for Li, Na, Mg, and Al, in comparison
with all-electron results; dimers of these elements are also considered. For the free atom, we
examine the bulk cohesive energy (which straddles the atomic and solid-state limits), the atomic
excitation energies and the atomic density. For the cohesive energy, we also present the results
of the simpler stabilized jellium and universal-binding-energy-curve models. The needed non-
locality or angular-momentum dependence of the pseudopotential has the conventional character,
and is most strongly evident in the excitation energies.

1. Introduction and a summary of conclusions

The pseudopotential [1, 2, 3, 4], a weak effective interaction between a valence electron
and an ion core, brings a useful simplification to condensed-matter physics and quantum
chemistry, at some cost in accuracy. The simplest and least accurate pseudopotentials
are local or multiplication operatorsw(r), the same for all components of the electron’s
angular momentum. This locality is required for fair tests of density functional approx-
imations [5] against more accurate many-body methods, and has a number of other practical
advantages [6, 7]. Two of us have recently proposed a local pseudopotential (the individual
‘evanescent-core pseudopotential’ of [7]) fitted to three dominant density parameters of a
simple metal: the valencez, the equilibrium average valence electron density

n̄ = 3

4πr3
s

(1)

andn̄int , the electron density averaged over the interstitial region between the surface of the
polyhedral Wigner–Seitz cell and the inscribed sphere. Thus we have refined the ‘stabilized
jellium’ [8, 9] and ‘ideal metal’ [10] models through the introduction of atomic structure.
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Our pseudopotential was constructed and tested for 16 simple metals in close-packed (fcc,
hcp) or nearly close-packed (bcc) crystal structures. All calculations in [7] and in the present
work employ the local spin-density approximation for exchange and correlation [5].

Figure 1. A comparison of Hamann’s non-local pseudopotential [15] to the local Shaw [36]
and evanescent-core [7] pseudopotentials for Na. The single parameter of the Shaw form was
fitted [13] to the equilibrium average valence electron densityn̄.

Our local pseudopotential has definite advantages over the Ashcroft form [11], which
fails to predict the bulk moduli correctly [12], and over the Ling–Gelatt form [13], which
places the first zero of the Fourier transformw(Q) incorrectly [13]. In fact, in our solid-
state calculations [7] (bulk binding energies, bulk moduli and their pressure derivatives,
chemical potentials, and structural energy differences), we found little evidence of any need
for non-locality, except in our incorrect structural predictions for Ca, Sr and Ba (where it
may be not so much non-locality as energy dependence [14] that is needed). Our local
pseudopotential is in a sense optimized for the bulk solid-state environment.

Sodium is one of the metals for which a local pseudopotential can be expected to work
well. Figure 1 compares our local pseudopotential for sodium with the non-local, norm-
conserving pseudopotential of Hamann [15]. In valence and outer-core regions of space,
the local pseudopotential provides a kind of average of the non-local pseudopotentials seen
by s and p valence electrons; in the inner core, it is considerably ‘harder’ or more repulsive.
The situation is very similar for Mg and Al.

In this work, we examine the extent to which our local pseudopotential can be transferred
successfully from the solid state to other environments. It will be seen that the local
pseudopotential is highly transferable for Na, usefully transferable for ten other metals (K,
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Figure 2. The number of interstitial valence electronsNint versus the density parameterrs for
Na in three different structures (bcc, fcc and hcp). The fcc and hcp curves are almost identical.
In the limit rs → 0, Nint tends toz�int /�WS , where�int and �WS are the interstitial and
Wigner–Seitz cell volumes.

Rb, Cs, Mg, Al, Ga, In, Tl, Sn, and Pb), but poorly transferable for Li, Be, Ca, Sr and
Ba. Moreover, the pattern of errors indicates a need for pseudopotential non-locality of the
conventional type [1, 2, 3, 4], in which the short-range repulsive part of the potential is
most repulsive for s electrons, less so for p, and still less for d (figure 1). We are not aware
of any previous systematic study of this sort.

We begin in section 2 with a discussion of the solid state. We define a dimensionless
quantity (̄n/n̄int ) dn̄int /dn̄, and show that a comparison of its pseudopotential and all-electron
values, evaluated at the equilibriumrs , can predict whether or not the pseudopotential is
transferable for a given element. Because our solid-state energies are evaluated to second
order in the pseudopotential, we examine the accuracy of this perturbation expansion. For
bcc sodium we find that it is adequate.

In section 3, we compare pseudopotential and all-electron results for the cohesive energy
and nearest-neighbour distance in six-atom octahedral clusters. The pseudopotential predicts
a self-compression for Li6, Na6, and Al6 clusters, in comparison with bulk nearest-neighbour
distances, and a self-expansion for Mg6. Taking all-electron results as our standard, the
quantitative error is small. Dimers of these elements show greater pseudopotential errors.

The free-atom limit, a more radical change from the bulk solid environment, is studied
in section 4, where we evaluate the bulk cohesive energies, the low-lying excitation
energies [16] and the electron densities for the free atom. The bulk cohesive energies
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Table 1. The average valence electron densityn̄ = 3/rπr3
s and average interstitial valence

electron densityn̄int for the simple metals. In the notation of [7],n̄int /n̄ = NI
int /N

U
int , and

(n̄/n̄int ) dn̄int /dn̄ = 1−(rs/3NI
int ) dNI

int /drs . Local pseudopotential [7] and all-electron values
of n̄ andn̄int agree at the equilibrium̄n, by construction. The crystal structures used here are the
conventional ones from [7], but the results are not sensitive to crystal structure. For example,
n̄int /n̄ = 1.06 for fcc Na, 1.02 for bcc Mg, and 0.93 for bcc Al (when evaluated by either the
pseudopotential perturbation or all-electron methods).

(n̄/n̄int ) dn̄int /dn̄

Metal n̄int /n̄ Pseudopotential (error) All-electron

Li 1.08 1.18 (+6%) 1.11
Na 1.07 1.18 (−2%) 1.20
K 1.11 1.19 (−3%) 1.22
Rb 1.11 1.19 (−4%) 1.23
Cs 1.12 1.19 (−1%) 1.20

Be 0.98 1.36 (+19%) 1.14
Mg 1.01 1.42 (+8%) 1.31
Ca 1.06 1.43 (+16%) 1.23
Sr 1.06 1.45 (+16%) 1.25
Ba 1.08 1.43 (+27%) 1.13

Al 0.91 1.51 (+8%) 1.40
Ga 0.72 1.63 (+10%) 1.48
In 0.76 1.63 (+6%) 1.54
Tl 0.68 1.70 (+19%) 1.43

Sn 0.67 1.74 (+22%) 1.43
Pb 0.62 1.81 (+23%) 1.47

Table 2. A comparison of perturbative and non-perturbative results for bcc Na using the same
local pseudopotential (the individual evanescent-core pseudopotential of [7]). The perturbation
expansion is carried to first order for the density, and to second order for the energy. The ‘Non-
perturbative A’ and ‘Non-perturbative B’ calculations are evaluated at the density parameters
rs that minimize the perturbative and non-perturbative energies, respectively. The ‘Non-
perturbative C’ results are obtained with a new set of parameters that fitrs andNint exactly in
a non-perturbative calculation (R = 0.409 Bohr andα = 4.554—see [7] for the corresponding
perturbative parameters).

Property Perturbative Non-perturbative A Non-perturbative B Non-perturbative C

rs (Bohr) 3.93 3.93 4.00 3.93
e (eV) −6.22 −6.18 −6.18 −6.22
B (Mbar) 0.071 0.078 0.065 0.071
B ′ 3.6 3.5 3.6 3.9
n̄int /n̄ 1.066 1.032 1.024 1.066
(n̄/n̄int ) dn̄int /dn̄ 1.182 1.156 1.164 1.165

are compared not only to experiment but also to those of two simple models: the stabilized
jellium model [8] (a structureless precursor of our local pseudopotential) and the universal
binding energy curve (UBEC) of Smith and co-workers [17]. Except for for Be, Pb
and the alkaline earths, the local pseudopotential cohesive energies are realistic, and the
UBEC emulates them rather well. The pseudopotential and all-electron ionization energies,
excitation energies and valence densities have also been compared with one another. The
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pseudopotential ionization energies are usually realistic. It is in the excitation energies of
the free atom that the need for non-locality is most striking.

Table 3. Cohesive energies and average valence electron density parametersr∗
s for six-atom

octahedral clusters.r∗
s = 0.5527b/z1/3, whereb is the nearest-neighbour bond length. The

geometry is constrained to a regular octahedron. Local pseudopotential [7] and all-electron
results are compared. Our calculations in tables 3 and 4 employ spin-polarized LSD for the
atom, and spin-unpolarized LSD for the cluster. The all-electron results of [25], in parentheses,
employ spin-polarized LSD for both.S is the total spin of cluster, from [25]. (Numerical values
from the calculation of [25] have been provided by G S Painter, private communication.)

Cohesive energy (eV/atom)
Cluster (S) Pseudopotential All-electron

Li 6 (1) 0.72 0.86 (0.88)
Na6 (1) 0.53 0.63 (0.61)
Mg6 (0) 0.17 0.22 (0.23)
Al 6 (1) 2.02 2.13 (2.12)

Density parameterr∗
s (Bohr)

Cluster Pseudopotential All-electron

Li 6 3.20 3.10 (3.05)
Na6 3.80 3.60 (3.60)
Mg6 2.98 2.86 (2.80)
Al 6 2.01 1.96 (2.01)

Self-compression ratior∗
s /rs (relative to bulk)

Cluster Pseudopotential All-electron

Li 6 0.99 0.99 (0.98)
Na6 0.97 0.96 (0.96)
Mg6 1.13 1.12 (1.10)
Al 6 0.98 0.96 (0.99)

The story that emerges from all these studies is consistent: our local pseudopotential
provides a sort of average of the pseudopotentials experienced by s, p, d and f electrons
in a more accurate non-local description, with the weights roughly optimized for the bulk
solid. Transferred to another environment, it makes errors that can be corrected by making
the potential more repulsive for s electrons and increasingly less repulsive for p, d and
f electrons. In agreement with the conventional picture of non-locality, there is a strong
splitting between the s and p potentials for Li and Be, due to the absence of p electrons
from their cores. In Ca, the s–p splitting is weak, but there is a strong p–d splitting, due
to the absence of d electrons from the core [18, 19]. Non-locality is most important for the
elements Li, Be, Ca, Sr and Ba.

Our local pseudopotentials have been constructed systematically for all the simple
metals. Originally intended for use in a perturbative description of a close-packed solid,
they transfer to other chemical environments about as well as could be hoped.

2. Solid-state tests of transferability

Our local pseudopotentials, constructed in the solid state for the equilibrium lattice and
lattice constant, have already been transferred successfully [7] to small changes of lattice
constant under pressure (and to several close-packed crystal structures at the equilibrium
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density). However, a successful prediction of the bulk modulus does not establish that the
binding energy curve of the solid will be accurate over a wide range of lattice constants.

A key ingredient for the construction of the local pseudopotential isNint , the number of
valence electrons in the interstitial region between the surface of the polyhedral Wigner–Seitz
cell and the largest inscribed sphere. Figure 2 shows the dependence ofNint upon rs , the
average valence electron density parameter, for body-centred-cubic (bcc) sodium, evaluated
to first order in the pseudopotential via equation (2.17) of [7]. In the highly compressed
limit rs → 0, Nint passes to its ‘universal’ valueNU

int appropriate to a uniform density of
valence electrons, because the kinetic energy per electron overwhelms the pseudopotential.
As rs increases from 0,Nint first increases slightly (due to repulsion from the core) and
then decreases again. At the equilibriumrs = 3.93 Bohr,Nint is still not too different from
its ‘universal’ value, so the first-order perturbation expansion is still valid. This expansion
eventually breaks down as the crystal is expanded, predicting a negativeNint for large rs

where the exactNint tends to zero from the positive side (the separated-atom limit).

Table 4. Cohesive energies and average valence electron density parametersr∗
s for dimers. See

the caption of table 3.

Cohesive energy (eV/atom)
Cluster (S) Pseudopotential All-electron

Li 2 (0) 0.52 0.52 (0.51)
Na2 (0) 0.46 — (0.44)
Mg2 (0) 0.04 — (0.09)

Density parameterr∗
s (Bohr)

Cluster Pseudopotential All-electron

Li 2 2.72 2.83 (2.84)
Na2 3.19 — (3.12)
Mg2 3.15 — (2.85)

Self-compression ratior∗
s /rs (relative to bulk)

Cluster Pseudopotential All-electron

Li 2 0.84 0.91 (0.90)
Na2 0.81 — (0.83)
Mg2 1.19 — (1.12)

As can be seen in figure 2 and in the caption of table 1, different crystal structures for
the same element have roughly the same interstitial densityn̄int = Nint/�int , but different
interstitial volumes�int .

In order to achieve good transferability to another lattice constant, the pseudopotential
should predict the all-electron value ofn̄int for that lattice constant. Thus, a test of solid-state
transferability is a comparison of the dimensionless parameter

n̄

n̄int

dn̄int

dn̄
= 1 − rs

3Nint

dNint

drs

(2)

at the equilibrium rs from pseudopotential and all-electron full-potential calculations.
Table 1 shows such a comparison for all 16 simple metals, in which the pseudopotential
result has been evaluated via first-order perturbation theory. This table suggests that the
local pseudopotential is poorly transferable for Li, Be, Ca, Sr, Ba, Tl, Sn and Pb, where
the pseudopotential makes large relative errors, and well or reasonably transferable for
the other metals. This result was partly expected: Li and Be have highly non-local
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pseudopotentials because they lack p electrons in the ionic core, so only s electrons
experience a pseudopotential repulsion. Ca similarly lacks d electrons in the core, so
only s and p electrons experience a pseudopotential repulsion. In all of the alkaline earths,
the d component of the non-local pseudopotential is much more attractive than the s and p
components, and is also strongly energy dependent due to the nearness to the Fermi level of
low-lying empty d-state resonances [18, 19]. Thus, both non-locality and s–d hybridization
are important in Ca, Sr and Ba. The heavier metals have relativistic effects which have
been incorporated only through their influence onn̄int at equilibrium.

Our solid-state construction, applications and tests rely upon a perturbation expansion
of the density to first order and the total energy to second order in the pseudopotential. As
already observed, this expansion cannot be used for a highly expanded lattice, or for a free
atom or cluster. Thus, the accuracy of perturbation theory is, for us, a transferability issue.
As a first step, we can define two dimensionless parameters that measure the strength of
the perturbation. The first is|ebs |/eF , whereebs is the second-order band-structure energy
and eF is the free-electron Fermi energy; this parameter ranges from 0.05 (Na) to 0.10
(Rb). The second is maxG6=0|w(G)/�0ε(G)|/eF wherew(G) is the Fourier transform of
the pseudopotential evaluated at a non-zero reciprocal-lattice vectorG, �0 is the volume per
atom, andε(G) is the dielectric function; this parameter ranges from 0.08 (Al) to 0.11 (Pb).

As a test of the adequacy of perturbation theory, table 2 compares perturbative and
non-perturbative results for sodium using our local pseudopotential. The non-perturbative
results were obtained by diagonalizing large matrices in a plane-wave basis [20], and are
converged with respect to basis set. For sodium our low-order expansion in powers of the
pseudopotential is accurate, as others [21] have also found. This expansion is less reliable
for polyvalent metals, such as magnesium and aluminium [21], although the fitting of the
pseudopotential within perturbation theory yields good bulk moduli [7]. For use in a non-
perturbative calculation, the parameters of our pseudopotential should ideally be readjusted
to fit rs andNint in a non-perturbative solid-state calculation. Such new parameters for Na
are indicated in table 2. In the remainder of this article, we use the original parameters
from the perturbative fit of [7].

3. Cluster tests of transferability

Clusters stand midway between bulk metals and free atoms, and represent a potentially
useful application of local pseudopotentials. In previous work [22, 23, 24], two of us have
shown that macroscopic surface and curvature energies suffice to determine the ‘smooth’
(non-shell-structure) part of the total energy of a small cluster. Painter and Averill [25]
have found that six-atom octahedral clusters of the elements exhibit many of the same
trends across the periodic table as do the bulk solids. Such octahedra can be ‘cut out’
of the face-centred-cubic (fcc) lattice, with no distortion of bond angles, or out of the
body-centred-cubic (bcc) or hexagonal-close-packed (hcp) lattice with some distortion.

As a test of the transferability of our local pseudopotential, we have compared
pseudopotential and all-electron calculations of the cohesive energy per atomεcoh and
equilibrium nearest-neighbour distanceb in the octahedral clusters Li6, Na6, Mg6, and Al6
(table 3). The nearest-neighbour distance in the cluster has been converted to an effective
r∗
s using the relationship appropriate to an fcc crystal,r∗

s = b
√

2(3/16πz)1/3. As expected,
we find good agreement forεcoh and r∗

s /rB
s (whererB

s is the bulk density parameter) for
these metals.

Our pseudopotential [7] has been fitted to theobservedrB
s of the bulk solid, which the

all-electron calculations underestimate by several per cent due to errors in the local density
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Table 5. Cohesive energies for the mono- and divalent metals. Stabilized jellium (SJ) and
local pseudopotential [7] results are compared to experiment [34]. Bulk solid calculations were
done in second-order perturbation theory (except for SJ, which has no band structure), and
pseudo-atom calculations were performed non-perturbatively.

Pseudo-atom Cohesive εcoh = (16π/3)

Metal energy (eV) (error) energy (eV) (error) × Br3
s z/(B ′ − 1)2

Li SJ −6.28 1.16
Pseudopotential −5.97 (+12%) 1.30 (−21%) 1.09
Experiment −5.32 1.65

Na SJ −5.42 0.82
Pseudopotential −5.21 (+1%) 1.01 (−9%) 0.99
Experiment −5.14 1.11

K SJ −4.60 0.69
Pseudopotential −4.36 (+0%) 0.81 (−13%) 0.83
Experiment −4.34 0.93

Rb SJ −4.36 0.62
Pseudopotential −4.15 (−1%) 0.73 (−13%) 0.78
Experiment −4.18 0.84

Cs SJ −4.09 0.56
Pseudopotential −3.90 (0%) 0.66 (−16%) 0.75
Experiment −3.89 0.79

Be SJ −31.96 1.05
Pseudopotential−31.57 (+15%) 0.87 (−74%) 2.07
Experiment −27.53 3.36

Mg SJ −23.61 1.16
Pseudopotential−23.06 (+2%) 1.19 (−22%) 1.63
Experiment −22.68 1.53

Ca SJ −19.63 1.03
Pseudopotential−18.84 (+5%) 1.22 (−34%) 1.66
Experiment −17.98 1.85

Sr SJ −18.16 0.96
Pseudopotential−17.42 (+4%) 1.15 (−32%) 1.59
Experiment −16.72 1.70

Ba SJ −17.55 0.94
Pseudopotential−16.89 (+11%) 1.06 (−43%) 1.42
Experiment −15.21 1.87

approximation for exchange and correlation. For the all-electron values ofrB
s , we have used

full-potential local spin-density values available in the literature: 3.14 Bohr for Li [26], 3.77
Bohr for Na [26], 2.55 Bohr for Mg [27], and 2.04 Bohr for Al [28].

For Li6 and Na6, r∗
s /rB

s < 1 as predicted [29] by the stabilized jellium model [8, 22,
23, 24]: surface tension compresses the cluster, whether or not the gross shell structure of a
spherical cluster is taken into account. But, for Al6 r∗

s /rB
s ∼ 1, and for Mg6 r∗

s /rB
s > 1, as

also found by Painter and Averill [25]. A possible explanation [25, 30] of this anomalous
behaviour is that, with two electrons per unit cell, bulk Mg would be an insulator but for
band overlap. With increasing cluster size, Mg is expected to pass over from van der Waals
to metallic binding. If Mg6 is much less strongly metallic than bulk Mg, then its weakened
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Table 6. Cohesive energies for the tri- and tetravalent metals. See the caption of table 5.

Pseudo-atom Cohesive εcoh = (16π/3)

Metal energy (eV) (error) energy (eV) (error) × Br3
s z/(B ′ − 1)2

Al SJ −53.56 3.73
Pseudopotential−53.76 (+1%) 3.41 (+1%) 2.54
Experiment −53.26 3.38

Ga SJ −50.87 3.73
Pseudopotential−56.17 (−2%) 2.62 (−9%) 2.58
Experiment −57.22 2.87

In SJ −46.95 3.32
Pseudopotential−50.28 (−5%) 2.59 (+3%) 2.05
Experiment −52.68 2.52

Tl SJ −45.68 3.35
Pseudopotential−51.13 (−9%) 2.40 (+27%) 2.13
Experiment −56.36 1.89

Sn SJ −80.15 4.74
Pseudopotential−88.72 (−5%) 3.37 (+8%) 2.68
Experiment −93.21 3.13

Pb SJ −77.67 4.62
Pseudopotential−88.29 (−9%) 3.23 (+60%) 2.80
Experiment −96.70 2.02

metallic bond could give rise to an expansion of the bond length.
Table 4 presents results for the dimers Li2, Na2, and Mg2, which are still further

removed from the solid-state origins of our local pseudopotential. (Unlike these three
dimers, Al2 is spin polarized and so has been omitted.) Except in sodium, the local
pseudopotential predictions for the self-compression ratiosr∗

s /rB
s no longer provide such an

accurate emulation of the all-electron predictions, although the cohesive energies are still
accurate.

Our calculations for the six-atom clusters and dimers employ a linear-combination-of-
atomic-orbitals local density molecular code [31]. Although the free atom is treated as
spin polarized, the cluster or dimer is not. Neglect of spin polarization should have little
effect on the nearest-neighbour distance of the six-atom spin-polarized clusters [29]; in any
case, a fair test of pseudopotential transferability requires only that the pseudopotential and
all-electron calculations be performed in the same way.

4. Atomic tests of transferability

As a test of transferability of our pseudopotential to the free atom, we have calculated the
cohesive energies, some low-lying atomic excited states, the first ionization potentials and
the radial valence electron densities, and have compared those quantities to all-electron and
experimental results.

The cohesive energy is the difference between the energy of a free atom and the energy
per atom of the bulk:

εcoh = z(eatom − e). (3)

In pseudopotential theory,eatom is the energy per valence electron of the pseudo-atom
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Figure 3. A comparison of the radial valence electron densities for the Na atom from an
all-electron calculation and from the evanescent-core [7] and Shaw [36] local pseudopotentials.

(atomic valence electrons bound to an ionic core by the pseudopotential) ande is the binding
energy per valence electron of the pseudo-solid (a sea of valence electrons bound to the
lattice of ions by the same pseudopotential). The ground-state energy of the 16 pseudo-atoms
was evaluated using the local spin-density approximation of Kohn–Sham density functional
theory, with the correlation energy of [32]. This calculation was done using the Liberman,
Cromer and Waber atomic code [33], but non-relativistically, as the pseudopotential (with
parameters fitted to scalar-relativistic all-electron calculations) is supposed to provide some
of the relativistic corrections. We have obtained the binding energy of the bulk solids
using second-order perturbation theory (see section 2). Two different models of increasing
sophistication were tested: stabilized jellium and the individual pseudopotential (see [7]).

We can directly compare the pseudo-atom energy with experiment, since it corresponds
to the sum of the ionization energies of all valence electrons. As tables 5 and 6 show, our
local pseudopotential achieves a remarkable agreement with experiment [34] for the alkalis
(excepting Li), the alkaline earths (excepting Be) and even for the tri- and tetravalents. For
the first two groups, the valence electrons are predicted to be a bit more bound than in
experiment, while the opposite behaviour is found for the last two groups.

The cohesive energy, as shown in the same tables, improves systematically when we go
from the structureless pseudopotential model (stabilized jellium [8]) to our structured local
pseudopotential. The cohesive energy evaluated with the local pseudopotential is close to
experiment in most cases. The biggest discrepancies are again for Li and Be, and also
Ca, Sr, Ba and Pb. The cohesive energy of aluminium is very well described, probably
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Table 7. Low-lying excitation energies for the atoms. All of the calculations were performed
using the local spin-density approximation of Kohn–Sham theory.1Eae is the all-electron
excitation energy and1Eps is the pseudo-atom excitation energy, obtained using the local
pseudopotential of [7]. ‘Ionization’ stands for the first ionization energy evaluated as the
difference between the total ground-state energies for the singly positive ion and the neutral
atom. Excitation energies were calculated for all of the atoms, but some have been suppressed
for the sake of brevity.

Metal Excitation 1Eae (eV) 1Eps (eV) (Error)

Li (2s↑)1 → (2p↑)1 1.82 2.80 (54%)
(2s↑)1 → (3s↑)1 3.27 3.65 (12%)
(2s↑)1 → (3p↑)1 3.73 4.49 (20%)
(2s↑)1 → (3d↑)1 3.91 4.42 (13%)
(2s↑)1 → (4s↓)1 4.80 5.17 (8%)
Ionization(2s↑) 5.47 5.97 (9%)

Na (3s↑)1 → (3p↑)1 2.19 2.20 (0%)
(3s↑)1 → (4s↑)1 3.19 3.06 (−4%)
(3s↑)1 → (3d↑)1 3.80 3.67 (−3%)
(3s↑)1 → (4p↑)1 3.87 3.81 (−2%)
Ionization(3s↑) 5.37 5.21 (−3%)

K Ionization (4s↑) 4.54 4.36 (−4%)

Rb Ionization(5s↑) 4.39 4.15 (−5%)

Cs (6s↑)1 → (6p↑)1 1.50 1.28 (−14%)
(6s↑)1 → (5d↑)1 1.76 2.39 (36%)
(6s↑)1 → (7s↑)1 2.34 2.10 (−10%)
(6s↑)1 → (7p↑)1 3.03 2.72 (−10%)
Ionization(6s↑) 4.08 3.90 (−5%)

Be (2s↑)1 → (2p↓)1 2.48 5.53 (123%)
(2s↑)1 → (2p↑)1 3.49 6.27 (80%)
(2s↑)1 → (3s↓)1 6.08 7.13 (17%)
(2s↑)1(2s↓)1 → (2p↑)2 6.12 13.33 (118%)
(2s↑)1 → (3s↑)1 6.24 7.36 (18%)
Ionization(2s↑) 9.04 10.36 (15%)

Mg (3s↑)1 → (3p↓)1 2.83 3.02 (7%)
(3s↑)1 → (3p↑)1 3.46 3.66 (6%)
(3s↑)1 → (4s↓)1 5.07 4.84 (−5%)
(3s↑)1 → (4s↑)1 5.19 5.03 (−3%)
(3s↑)1(3s↓)1 → (3p↑)2 6.64 7.29 (10%)
Ionization(3s↑) 7.75 7.61 (−2%)

due to a cancellation between the local-density-approximation error and the pseudopotential
error. The local density approximation is known to overestimate the cohesive energy of the
non-alkali metals [35]. We find such overestimation for Al, In, Tl, Sn and Pb.

It is interesting to track the origin of the errors in the cohesive energy. For the alkalis,
our very good description of the pseudo-atom energy suggests that any error in the cohesive
energy comes mainly from the solid. For the alkaline earths, the main error seems to
come from the atom. Nevertheless, for Ca, Sr and Ba, the solid-state sd-hybridization
contributions to the energy found by Moriarty [19] could bring our cohesive energies into
agreement with experiment. For thez = 3 group, the errors in the pseudo-atom and in the
solid tend to compensate each other, and the same can be said, although to a lesser extent,
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Table 8. See the caption of table 7.

Metal Excitation 1Eae (eV) 1Eps (eV) (Error)

Ca (4s↑)1 → (3d↓)1 1.81 4.39 (142%)
(4s↑)1 → (4p↓)1 2.01 1.99 (−1%)
(4s↑)1 → (3d↑)1 2.17 4.53 (109%)
(4s↑)1 → (4p↑)1 2.45 2.54 (4%)
(4s↑)1 → (5s↓)1 3.93 3.75 (−5%)
Ionization(4s↑) 6.25 6.24 (−0%)

Sr Ionization(5s↑) 5.87 5.78 (−2%)

Ba Ionization(6s↑) 5.37 5.60 (4%)

Al (3p↑)1 → (4s↓)1 3.02 2.33 (−23%)
(3s↑)1(3p↑)1 → (3p↓)2 3.65 4.33 (18%)
(3p↑)1 → (4p↑)1 3.89 3.36 (−14%)
(3p↑)1 → (3d↑)1 4.10 3.61 (−12%)
(3p↑)1 → (5s↑)1 4.69 4.01 (−15%)
Ionization(3p↑) 5.98 5.38 (−10%)

Ga Ionization(4p↑) 6.01 5.27 (−12%)

In Ionization(5p↑) 5.69 5.13 (−10%)

Tl Ionization (6p↑) 5.49 5.03 (−8%)

Sn Ionization(5p↑) 7.40 6.80 (−8%)

Pb (6p↑)1 → (6p↓)1 0.45 0.51 (13%)
(6p↑)1 → (7s↑)1 3.78 3.29 (−13%)
(6p↑)1 → (7s↓)1 3.90 3.44 (−12%)
(6p↑)1 → (7p↑)1 4.98 4.54 (−9%)
(6p↑)2 → (6p↓)1(7p↑)1 5.03 4.60 (−8%)
Ionization(6p↑) 7.10 6.69 (−6%)

for z = 4.
We have not attempted to evaluate all-electron cohesive energies, which are typically

small differences between large total energies and thus require careful balancing of the errors
in the atomic and solid-state codes.

From the universal binding energy curve (UBEC) of Smith and co-workers [17], we
extract the following relationship involvingεcoh, B, andB ′:

εcoh = 4z

(
∂2e

∂r2
s

)3 / (
∂3e

∂r3
s

)2

= 16π

3

Br3
s z

(B ′ − 1)2
. (4)

This relation also follows directly from (2.5), (2.15) and the line below equation (2.13)
in [17c]. As a test of this relationship (and, therefore, of the UBEC), we have used our
calculatedB and B ′ from [7] in the right-hand side of equation (4) and compared with
the cohesive energy calculated from equation (3), and with the experimental value [34].
Tables 5 and 6 demonstrate the good predictive power of the UBEC relationship.

Tables 7 and 8 show some low-lying excitation energies and the first ionization potential
obtained in a local spin-density description of the atom. Again the excitation and ionization
energies were evaluated non-relativistically for the pseudopotential case and relativistically
for the all-electron case. The agreement between the all-electron and pseudopotential results
is good for the monovalent metals other than Li. Li, which has strong pseudopotential non-
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Figure 4. A comparison of the radial valence electron densities for the Al atom from an
all-electron calculation and from the evanescent-core [7] and Shaw [36] local pseudopotentials.

locality, exhibits large errors for the sp transitions. The first excited state of Na comes out
with exactly the right energy, while Cs displays a large error for an sd transition. Passing
to the divalents, we find that Be has the same problems as Li, with sp transitions showing
even bigger errors. Mg has acceptable transferability. For Ca, Sr, and Ba, large errors
are found for the sd excitations. Our energy errors for sd transitions are always positive,
showing that we need less repulsion for d states. For the tri- and tetravalent metals, the
agreement between all-electron and local pseudopotential results is fair, with pp, sp and pd
excitations showing errors of roughly the same size.

Ionization energies, obtained by stripping the atom of its outermost valence electron,
are also in good agreement with all-electron results (and, therefore, with experiment). Even
for Li and Be the agreement is satisfactory, although a bit worse than that obtained for the
other metals of the same valence.

Good non-local pseudopotentials, with atomic orbital pseudo-densities fitted to all-
electron orbital densities beyond a given core radius (norm-conserving pseudopotentials),
show very small errors in the low-lying energy spectrum [16]. To understand the larger local
pseudopotential errors in tables 7 and 8, we have plotted in figure 3 the valence electron
radial densities, both in the all-electron and in the local pseudopotential case, using the local
spin-density approximation. For Na, the agreement between these densities is reasonable
beyond the radial distancer ∼ rWS = rs , although not so perfect as for norm-conserving
pseudopotentials. Since our pseudopotential is less repulsive than the s component of a
good non-local pseudopotential (such as Hamann’s [15]) near the conventional core radius,
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Figure 5. A comparison of the s parts of the radial valence electron densities for the Al atom.
See the caption of figure 4.

our electron density is slightly shifted inwards.
In figures 4–6 the radial valence electron density for the Al pseudo-atom is plotted

against the all-electron result, showing both the total valence electron density and its separate
s and p contributions. Although the total valence charge densities of the all-electron and
pseudopotential calculations are similar for distancesr > rWS , examination of the s and p
charge densities shows that the former is underestimated in the pseudo-atom while the latter
is overestimated for that range of distances. This limitation of our local pseudopotential
follows from its very construction: the potential is fitted to the total valence electron density
of the solid, and not to the individual atomic states of the polyvalents.

Figures 3–6 also show the atomic density obtained from the local Shaw pseudopotential
(figure 1 and [36]) with its one parameter fitted [13] to the equilibrium valence electron
density of the solid. As expected from arguments in [37] and [38], our local pseudopotential
with its harder core transfers better to the atom than does the Shaw form. Modelling an
ion as a rigid sphere of stabilized jellium [8] or ideal metal [10] leads to a soft-core
pseudopotential not unlike the Shaw form, and with the same limitations. Harder cores are
more transferable, although solid-state calculations using them require more plane waves
and higher orders of perturbation theory. Increasing the nominal valencez for a given
element would also improve transferability and would extend local pseudopotentials to the
whole periodic table [39], but at a still greater computational cost.
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Figure 6. A comparison of the p parts of the radial valence electron densities for the Al atom.
See the caption of figure 4.

Acknowledgments

We thank John Smith, Gayle Painter, Weitao Yang, José Lúıs Martins and Michael Teter
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